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This community has already identified many of the applications of ML/AI for IFE
research

High repetition rate diagnostics with
integrated machine learning analysis
for a new paradigm of actively

Scott, G.G. Lawrence Livermore National

Laboratory controlled Inertial Fusion Energy
experiments
Accelerating the science, technology,
Laboratory for Laser Energetics, and workforce base for inertial fusion
Heuer, Peter . ) 5 ;
University of Rochester energy with a proposed high
repetition rate facility
Lawrence Livermore National Validating IFE Concepts with Machine
Gopalaswamy, V. Laboratory Learning Driven Design Optimization
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Summary

Integrating Machine Learning and Artificial Intelligence will be key to full
utilization of HRR for accelerated scientific discovery

Key Metrics
e Laser technology has enabled high-energy (10’s J-kJ) multi-Hz operation = data throughput by ~36,000X.

e  Control systems still require “hands on” operation. Need ML for fine control/stability for IFE power plant.
e  “Big Data” (TB/s?) handling through Al will be necessary to filter, analyze, and retain important data.

e ML analyzed diagnostic data = ps-ms timescales (>1,000X speed)

e Surrogate models from ensemble simulations to scan multi-dimensional parameter space. >1,000X faster

e  Comparison/retraining during HRR experimental operations = optimization and exploration

The revolution in computational power and machine learning techniques paves the way for new

approaches in data analysis, prediction, and comparing simulation and experiment
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Motivation
Currently we make use of a number of premier facilities around the US & the
world to conduct forefront HED science
MEC SLAC
D@ Z Machine

OMEGA-60

NIF-ARC

Jupiter Laser Facility

TS

.\/

HED science has focused on large, energetic drivers that are mostly single-
shot (>shot/30 min)
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Current/Future Lasers

In the near-term, laser drivers are moving toward higher repetition rates
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P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)
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Current/Future Lasers

Gaps in rep-rate and energy (scale) will need to be bridged for IFE, but there are
still many challenges to enabling true HRR experiments
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Examples: Science

HRR will provide the 10,000’s of shots to adequately provide opacity and radiative

properties benchmark data

Solar Model Zones

_Boundary

PHOTOSPHERE

Astro, ICF & HED at T>200 eV, r>0.1 g/cc are limited by under-validated radiative

Self-emission

Typical Experiments

X-ray emission

Short puls:\

heater beam I
(>102° W/cm?)

Buried <0.1 um thin
micro-dot sample

Long pulse
drive beam
(compression)

Hoarty, JPCS, 2010

1 2. heat

Opacity

Samples s,
~ /2
1.com pre s ASS/‘OO Heeter, LLNL

3. backlight

properties models that require rigorous validation
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Examples: Sources

HRR will generate consistent and reproducible secondary source particle/radiation
beams for probing/driving experiments

lon Acceleration Wakefield Acceleration
Laser “ Dazzler

. o Deformable Co
Thin metallic foil —> Mirror MManqs
Relativistic electrons

Control system

Laser amplifiers
and compressor

s s e o
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Scintillator Data

Proton
T screens \\A

- Beam
N

Rear surface

electrostatic sheath EUID
Markey, STFC report (2010) S. Dann, et al., PRAB (2019)

7

Dipole magnet 5 H X-ray CCD

eam
A block AEE—

Hydrogen surface
contaminants — |

Also: R.J. Shalloo, et al., Nat. Comm. (2021)

High brightness, high flux sources of x-rays, g’s, energetic particles (electrons,

ions, neutrons, positrons) will enable numerous applications
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Examples

Many classes of IFE-relevant experiments will benefit from different features of high-
throughput experiments

i. Laser plasma instabilities
- Laser pulse shapes/plasma environments
li. dynamic compression physics
- probe new phase space
lii. non-equilibrium physics in warm dense matter
—> trace evolution of the system in time
iv. materials EOS and opacity
—> statistics to minimize error bars
v. particle and radiation beams**
—> consistency, reproducibility, high average brightness
vi. plasma nuclear physics
- high average numbers to probe rare or subtle nuclear rxns**
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HRR System
HRR is not just driver @ 10 Hz - a fully integrated system that leverages ML and
Al in many domains for autonomous operation

Proposed input parameters to laser

a Laser system diagnostics

diagnostics HEDX?:)atiycal i
diagnostics
High
repetition 4 -
rate laser 4
Control signals for safe
Jiser Inpuk paramsters particle + nuclear
diagnostics
High
LASER repetition rate

LOOP targetry

“Accelerating the rate of discovery: toward high-

repetition-rate HED science”. PPCF, (2021)

Proposed input parameters
to target

EXPERIMENT LOOP

T. Ma, et al.,

MODELING & SIMULATION LOOP

Challenges that stem from high-rep-rate experiments are starting to

be addressed INVSE o




Machine Learning & Artificial Intelligence are already making large impacts in
scientific discovery & fusion

Perspective

Article

physics
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Examples: ML Apps
ML can organize & analyze large data sets, help with safe driver operation, and
can incorporate experimental data to build real-world-informed models

/ Regression \ / Classification \ / Expt.-informed Models\
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EnsembleslSurrogate modelﬂ K NIF Damage Detection/ K Interpreting experimenty

Advances in computational power and ML techniques enable new approaches to

data analysis, prediction, and comparing simulations & experiments
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ML Examples: Simulations

ML/AI are being used to explore vast parameter spaces, bridge multi-scale multi-
physics multi-fidelity simulations, and optimize designs

Ensemble PIC Modeling for Particle Source Ensemble HYDRA Modeling for Experimental Design

Electron spectrum ) Inputs: t T Iy mg D Ly 100t
Qe 0 6 0 0
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g S 60
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— 20¢
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Energy [MeV] Output: E; T,
Djordjevié, B. Z., et al. Physics of Plasmas, 28(4), 043105. 0.0¢

Optima for 300 eV

02 04 06 0.8
Buried layer thickness (um)

1.0

Simulations have a significant head start on leveraging ML - blueprints for

experiments at HRR

‘ Lawrence Livermore National Laboratory

Design “cost” function (lower-> better)
Martin, M. E., London, R. A., et al. High Energy
Density Physics, 26, 26-37
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ML Examples: Simulations

ML in tandem with accurate models can be trained to ensure safe and accurate
driver operation

Laser Input Spectra NN-predicted Laser Damage
08 1 1.0

Q
-g 0 6 0.8
= Falsely predicted damage Correct damage
E_ 61.50
£
o
o
<0.4 £0°
> E
+— o
2 3
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20.2 K
0.2 Correct safe Falsely predicted safe
00 % 36.50 0.90
700 725 750 775 800 825 850 875 900
Wavelength (nm) 0.0
0.2 0.3 0.4 0.5 0.6 0.7 0.8
T. Galvin, et al., Proc. of SPIE 10751(2018) Al Dsiriage

Crucial in science experiments and for IFE = cannot afford downtime
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ML Examples: Diagnostics
Diagnostics must be HRR-capable while remaining robust to extremely hostile
experimental environments (EMP, neutrons, etc.)

Multi-keV X-rays X-ray Spectra

x10% Data

Proton Beams

600} (b) L 1.8
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. . X . X-ray Source
D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers R.A. Simpson, et al., “Development of a deep learning based automated data 0.0 e
(PROBIES)”, PPCF (2021) analysis for step-filter x-ray spectrometers in support of high-repetition rate short- X X | | |
pulse laser-driven acceleration experiments”, RSI 92,075101 (2021) D.A. Mariscal, (Submitted) 0 200 400

Temperature [eV]
Incorporating ML into diagnostics (edge) will be necessary for rapid and accurate
analysis that leaves time for on-the-fly decisions**
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Data Handling
ML can help processina/storina data aathered from hiah rep-rate experiments

implosion velocities

n-uniformity

shock velocities

b

r
: , L Processed -
SO Tuoctinplosin . e Cenfiguration

Device Calibration
nalysis Parameters

A

n time-of-flight

*S. Azevedo, et al., National Ignition Facility (NIF) Shot Data Analysis and Visualization (2012)

Leverage knowledge from low shot-rate facilities (lasers, pulsed-power) and high rep-
rate facilities (accelerators) to handle data streams
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Data Handling
Heterogenous data is used to benchmark HED codes - design the next
generation of experiments (currently over weeks/months/years)

Drive characterization in-flight shape

Code comparisons

x-ray shell trajectory
drive Miranda (High-order
spectrum 1 Eulerian)

N

HYDRA
hot-spot shape (ALE)

shock velocities

RAGE

"~
& B
HYDRA {

@

Used to constrain models & drive on capsule

Fill tube

Hydrodynamics “validation”
Micro-struc

ablation front growth

o
Space (um)

stagnation
hydrodynamics

Used to validate instability & degradation
mechs.

Reduced data representations will be necessary for experiments and
simulations to “communicate”
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Machine learning allows us to improve predictive modeling across applications

Machine learning to compare
High-performance computing simulation and experiment Large-scale experiments

Complete simulation and experiment data

Deep neural
network

R (x10°-3 em)
°

e NIF X-ray image

HYDRA simulation Improved prediction

Machine learning will allow us to use our full data sets to make our models

more predictive

Recent demos: Humbird, et al., IEEE TRANS PLAS SCI 48, (2020 ), Gopalaswamy, Varchas, et al. Nature 565.7741 (2019)
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Most of the enabling technology has been demonstrated - must be integrated

o mm—

Proposed input parameters to laser

a Laser system diagnostics
diagnostics

oPeratiy,, v

HED optical +
x-ray
diagnostics

Laser High

control repetition

4
system rate laser

Control signals for safe Secondary
laser input parameters particle + nuclear
diagnostics

repetition rate

targetry

“Accelerating the rate of discovery: toward high-

repetition-rate HED science”. PPCF, (2021)

Proposed input parameters \ o A
O ENE EXPERIMENT LOOP §

T. Ma, et al.,

MODELING & SIMULATION LOOP

ML & Al will be crucial to increasing the rate while maintaining high fidelity
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To increase the rate of learning from HRR facilities in support of IFE, experiments
and simulations must be integrated through ML and Al

Multi-physics, multi-scale implosion velocities
1: Shot fired

Pre-plasma hydro (HYDRA) e acceleration (PSC)
. " [TRser ' Proton Beam -

wr -4
n) s
o LBLELI B | 1

n-uniformity
2: Image acquired

e space density)

Target implosion
WELERELEEY ~ 20 ns in duration

4: Resulting Metrics

" Log(electron phas:

1010 = S
20 = - T 7 D::Zm Spectrum
*S. Wilks ‘ago 4‘50 . % '\\ ¢ E.
______ 2[ym] *A. Kemp ZD. \'\’\‘ -
© Total Energy |
Multi-fidelity 10° 10 s
Proton Energy [MeV]
* Low=1,000's  m—
e High=10's
e  Connect multi-physics, multi- e Rapid, accurate, heterogeneous e Pipelines/filtration/storage
scale, multi-fidelity models data analysis 2 compared to

simulation models

Tech should be deployed & tested on existing facilities/capabilities to build up to full IFE 2 will contribute to HED,

ICF, NNSA missions, LaserNetUS, etc. along the way
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